Amine-Catalyzed Addition of Azide Ion to a,b-**Unsaturated Carbonyl Compounds**

David J. Guerin, Thomas E. Horstmann and Scott J. Miller^{*}

Department of Chemistry, Merkert Chemistry Center Boston College, Chestnut Hill, Massachusetts 02467-3860

Supporting Information

General Procedures. Proton NMR spectra were recorded on Varian 400 or 300 spectrometers. Proton chemical shifts are reported in ppm (δ) relative to internal tetramethylsilane (TMS, δ 0.0) or with the solvent reference relative to TMS employed as the internal standard $(CDCl₃, δ 7.26 ppm). Data are reported as follows: chemical shift (multiplicity [singlet (s), doublet$ (d), triplet (t), quartet (q), and multiplet (m)], coupling constants [Hz], integration). Carbon NMR spectra were recorded on Varian 400 (100 MHz) or 300 (75 MHz) spectrometers with complete proton decoupling. Carbon chemical shifts are reported in ppm (δ) relative to TMS with the respective solvent resonance as the internal standard (CDCl₃, δ 77.0). NMR data were collected at 25 °C, unless otherwise indicated. Infrared spectra were obtained on a Nicolet 210 spectrophotometer. Diagnostic bands are reported $(cm⁻¹)$. Analytical thin-layer chromatography (TLC) was performed using Silica Gel 60 F254 precoated plates $(0.25 \text{ mm thickness})$. TLC R_f values are reported. Visualization was accomplished by irradiation with a UV lamp and/or staining with cerium ammonium nitrate (CAM) or $KMnO₄$ solutions. Flash column chromatography was performed using Silica Gel 60A (170-400 mesh) from Fisher Scientific.1 Elemental analyses were performed by Robertson Microlit (Madison, NJ).

All reactions were carried out under an argon atmosphere employing oven- and flame-dried glassware. Methylene chloride (CH₂Cl₂) and triethylamine (Et₃N) were distilled from CaH₂ prior to use. Azidotrimethylsilane (TMSN₃) and 2-Cyclohexen-1-one (1) were purchased from the Aldrich Chemical Company and were distilled prior to use and stored under argon.

 \overline{a}

¹⁾ Still, W. C.; Kahn, M.; Mitra, A. *J. Org. Chem.* **1978**, *43*, 2923-2925.

N-Methylimidazole was distilled and stored under argon at -20 °C prior to use. 2-Cyclopenten-1one (**3**), 4,4-dimethyl-2-Cyclohexen-1-one (**5**), 3-methyl-2-Cyclohexen-1-one (**9**), and 2,4,4 trimethyl-2-Cyclohexen-1-one (**11**), hexamethylphosphoramide (HMPA) and 1,8 diazabicyclo[5.4.0]undec-7-ene (DBU) were purchased from the Aldrich Chemical Company and were used without further purification. Glacial acetic acid was purchased from Fisher Scientific and used without further purification. Enone 7 was prepared according to the method of Heathcock.² Oxazolidinone **12** was prepared according to the method of Evans.3

Caution: Organic azides are potentially explosive compounds and should be handled with great care. We encountered no explosive behavior during these studies, however.

General Procedure for the Evaluation of Lewis Bases as Catalysts (Table 1).

To a solution of TMSN₃ (0.690 mL, 5.2 mmol) in anhydrous CH_2Cl_2 (5.0 mL) was added AcOH (0.298 mL, 5.20 mmol) at ambient temperature. After stirring for 20 min, 2-cyclohexen-1 one (0.101 mL, 1.04 mmol) was added dropwise. The neat Lewis basic catalyst (0.21 mmol) was then introduced. After stirring at ambient temperature for 5 h, the reaction mixture was applied directly to a silica plug and eluted with 45% EtOAc/hexane to afford analytically pure product.

General Procedure for Evaluation of Substrate Scope (Table 2).

 \overline{a}

To a solution of 5.0 equiv TMSN₃ (relative to substrate) dissolved in anhydrous CH_2Cl_2 was added an equimolar amount of AcOH at ambient temperature. After stirring for 20 min, the substrate (1.0 equiv) was added followed by Et_3N (0.20 equiv). All reactions were performed at a concentration of 0.2-0.3 M in substrate. Reactions were monitored by TLC, and were worked up upon disappearance of starting material (18 to 28 h). The crude reaction mixture was applied directly to a silica plug, eluting with 45% EtOAc/hexane to afford pure product.

²⁾ Oare, D. A.; Henderson, M. A.; Sanner, M. A.; Heathcock, C. H. *J. Org. Chem.* **1990**, *55*, 132- 157.

³⁾ Evans, D. A.; Chapman, K. T.; Bisaha, J. *J. Am. Chem. Soc.* **1988**, *110*, 1238-1256.

Data for **Azide-2.**

$$
\begin{array}{c}\n0 \\
2\n\end{array}
$$

¹H NMR (CDCl₃, 400 MHz) δ 3.89 (apparant septuplet, J=4.0 Hz, 1H), 2.66 (dd, J=14.3 Hz, 4.8 Hz, 1H), 2.43 (dd, J=14.3 Hz, J=8.4 Hz, 1H), 2.35 (m, 2H), 2.09 (m, 2H), 1.85-1.70 (m, 2H);

 13 C NMR (CDCl₃, 100 MHz) δ 207.1, 59.4, 46.5, 40.6, 29.7, 21.4; IR (film, cm^{-1}) 2093, 1715; TLC R*f* 0.31 (20% EtOAc/hexane); Anal. Calcd. for C₆H₉N₃O₁: C, 51.79; H, 6.52; N, 30.20. Found: C, 52.10; H, 6.45; N, 29.98.

Data for **Azide-4.**

O N3 **⁴**

¹H NMR (CDCl₃, 400 MHz) δ 4.29 (apparant quintet, J=5 Hz, 1H), 2.44-2.00 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 214.5, 58.9, 44.1, 35.8, 28.9; IR (film, cm-1) 2102, 1747; TLC R*f* 0.29 (20% EtOAc/hexane); 13 C NMR Spectrum attached to demonstrate purity (Page SI-8).

Data for **Azide-6.**

¹H NMR (CDCl₃, 400 MHz) δ 3.50 (dd, J=9.4 Hz, 4.6 Hz, 1H), 2.69 (dd, J=14.8 Hz, 4.8Hz, 1H), 2.51 (dd, J=15.4 Hz, 9.2 Hz, 1H), 2.34 (m, 2H), 1.81 (ddd, J=14.0Hz, 6.4Hz, 6.1 Hz, 1H), 1.52 (ddd, J=14.0 Hz, 5.0 Hz, 5.0 Hz, 1H), 1.16 (s, 3H), 1.08 (s, 3H);

 13 C NMR (CDCl₃, 100 MHz) δ 207.5, 68.4, 43.0, 37.6, 35.2, 34.9, 27.1, 21.2;

IR (film, cm-1) 2107, 1720;

TLC R*f* 0.26 (10% EtOAc/hexane);

Anal. Calcd. for C₈H₁₃N₃O₁: C, 57.46; H, 7.84; N, 25.13. Found: C, 57.64; H, 7.74; N, 25.00.

Data for **Azide-8.**

$$
M_{\text{Me}} \nightharpoonup \nightharpoonup
$$

¹H NMR (CDCl₃, 400 MHz) δ 3.82 (ddd, J=14.7 Hz, J=8.1 Hz, J=3.5 Hz, 1H), 2.76 (dd, J=17.6 Hz, J=9.5 Hz, 1H), 2.48 (dd, J=17.8 Hz, J=3.1 Hz, 1H), 1.79 (oct, J=5.9 Hz, 1H), 1.16 (s, 9H), 0.97 (d, J=6.6 Hz, 3H), 0.94 (d, J=7.0 Hz, 3H);

 13 C NMR (CDCl₃, 100 MHz) δ 212.8, 63.9, 44.3, 38.7, 32.5, 26.2, 19.4, 17.8;

IR (film, cm-1) 2093, 1709;

TLC R_f 0.44 (5% EtOAc/hexane);

Anal. Calcd. for C₁₀H₁₉N₃O₁: C, 60.88; H, 9.71; N, 21.30. Found: C, 61.15; H, 9.71; N, 21.01.

Data for **Azide-10.**

¹H NMR (CDCl₃, 400 MHz) δ 2.49 (d, J=14.4, 1H), 2.42-2.34 (m, 2H), 2.30-2.22 (m, 1H), 2.05-1.87 (m, 3H), 1.82-1.76 (m, 1H), 1.40 (s, 3H); 13 C NMR (CDCl₃, 100 MHz) δ 207.8, 64.4, 52.0, 40.2, 35.4, 25.8, 21.4; IR (film, cm-1) 2099, 1715; TLC R_f 0.31 (20% EtOAc/hexane); Anal. Calcd. for C₇H₁₁N₃O₁: C, 54.89; H, 7.24; N, 27.43. Found: C, 54.73; H, 7.26; N, 27.69.

Data for **Azide-13.**

$$
\begin{array}{c}\n0 \\
0 \\
\hline\n\end{array}
$$

¹H NMR (CDCl₃, 400 MHz) δ 4.45 (t, J=8.1 Hz, 2H), 4.06 (m, 3H), 3.22 (dd, J=17.8 Hz, J=8.78 Hz, 1H), 2.99 (dd, J=17.6 Hz, J=4.39 Hz, 1H), 1.36 (d, J=6.6 Hz, 3H); 13 C NMR (CDCl₃, 100 MHz) δ 169.9, 153.2, 62.2, 53.6, 42.4, 41.7, 19.7 IR (film, cm-1) 2114, 1778, 1696; TTLC R_f 0.41 (40% EtOAc/hexane); Anal. Calcd. for C₇H₁₀N₄O₃: C, 42.42; H, 5.09; N, 28.27. Found: C, 42.71; H, 5.11; N, 27.99.

Substrates **14** and **16** were prepared in analogy to the method of Halverstadt, et. al..4

 1 H NMR (CDCl₃, 400 MHz) δ 6.76 (dq, J=13.6 Hz, 7.0 Hz, 1H), 5.88 (d, J=15.6 Hz, 1H), 4.22 (t, J=5.6 Hz, 2H), 2.59 (t, J=5.8 Hz, 2H), 2.29 (s, 6H), 1.87 (d, J=7 Hz, 3H); 13 C NMR (CDCl₃, 100 MHz) δ 166.3, 144.7, 122.4, 61.9, 57.9, 45.8, 18.1; IR (film, cm⁻¹) 1720, 1659; TLC R_f 0.42 (10% MeOH/CH₂Cl₂) Anal. Calcd. for $C_8H_15N_1O_2$: C, 61.12; H, 9.62; N, 8.91. Found: C, 60.84; H, 9.33; N, 9.12.

-

¹H NMR (CDCl₃, 400 MHz) δ 6.78 (dd, J=15.7 Hz, J=6.6 Hz, 1H), 5.64 (d, J=15.7 Hz, 1H), 4.05 (t, J=5.9 Hz, 2H), 2.41 (t, J=5.7 Hz, 2H), 2.34 (d-septuplet, J=6.6, 5.5 Hz, 1H), 2.11 (s, 6H), 0.88 (d, J=6.6 Hz, 6H); 13 C NMR (CDCl₃, 100 MHz) δ 166.3, 155.0, 118.0, 61.6, 57.6, 45.4, 30.6, 20.9; IR (film, cm⁻¹) 1721, 1657; TLC R_f 0.26 (5% MeOH/CH₂Cl₂); Anal. Calcd. for C₁₀H₁₉N₁O₂: C, 64.83; H, 10.34; N, 7.56. Found: C, 64.89; H, 10.11; N, 7.77.

⁴⁾ Halverstadt, I. F.; Hardie, W. R.; Williams, A. R. *J. Am. Chem. Soc.* **1959**, *81*, 3618-3628.

General Procedure for the Preparation of Azides 15 and 17.

To a solution of TMSN₃ (0.422 mL, 3.18 mmol) in anhydrous CH_2Cl_2 (2.0 mL) was added an equimolar amount (0.182 mL, 3.18 mmol) of AcOH. After stirring at ambient temperature for 20 min, substrate **14** (0.100 g, 0.64 mmol) was added, and the reaction was allowed to stir at ambient temperature for 24 h. The reaction mixture was then applied directly to a silica plug and eluted with 10% MeOH/CH₂Cl₂. The filtrate was concentrated *in vacuo* to an oil, and then redissolved in 20 mL of CH_2Cl_2 , and washed with saturated sodium bicarbonate solution (2 x 10) mL). The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to a clear liquid, which was then purified by flash chromatography to yield azide **15** as a clear liquid

 $(0.074 \text{ g}, 58\%).$

Data for **Azide-15.**

¹H NMR (CDCl₃, 400 MHz) δ 4.21 (t, J=5.6 Hz, 2H), 3.97 (apparant sextet, J=6.8 Hz, 1H), 2.58-2.52 (m, 3H), 2.47 (dd, J=16.0 Hz, J=5.6 Hz, 1H), 2.28 (s, 6H), 1.31 (d,J=6.4 Hz, 3 H);

 13 C NMR (CDCl₃, 100 Mhz) δ 170.3, 62.4, 57.7, 54.2, 45.6, 41.0, 19.5; IR (film, cm^{-1}) 2112, 1748; TLC R_f 0.42 (10% MeOH/CH₂Cl₂) Anal. Calcd. for C₈H₁₆N₄O₂: C, 47.99; H, 8.05; N, 27.98. Found: C, 47.85; H, 7.95; N, 27.89.

¹H NMR (CDCl₃, 400 MHz) δ 4.23 (t, J=5.7 Hz, 2H), 3.71 (quintet, J= 4.8 Hz, 1H), 2.58 (m, 3H), 2.48 (dd, J=16.1 Hz, J=9.5 Hz, 1H), 2.28 (s, 6H), 1.82 (m, 1H), 0.97 (d, J=6.6 Hz, 3H), 0.95 (d, J=6.6 Hz, 3H);

 13 C NMR (CDCl₃, 100 MHz) δ 171.1, 65.0, 62.5, 57.7, 45.7, 37.1, 32.6, 19.2, 17.9;

IR (film, cm-1) 2128, 2097, 1738;

TLC R_f 0.42 (10% MeOH/CH₂Cl₂)

Anal. Calcd. for C₁₀H₂₀N₄O₂: C, 52.61; H, 8.83; N, 24.54. Found: C, 52.38; H, 8.71; N, 24.47.

Procedure for the conversion of azide 17 to BOC-protected amino acid 18.

To a stirred solution of azide **17** (0.146 g, 0.64 mmol) in MeOH (6.0 mL) was added di*tert*-butyl dicarbonate (BOC₂O, 0.146 g, 0.67 mmol), followed by a catalytic amount (0.020 g) of 10% palladium on carbon. The reaction mixture was flushed with dihydrogen (3X) and then allowed to stir for 3 h at ambient temperature under an H_2 atmosphere (balloon). The reaction mixture was then filtered through Celite, and the resulting filtrate was concentrated *in vacuo* to give the intermediate BOC-protected amino ester (0.149 g, 77%), which was carried on without further purification.

To a stirred solution of the BOC-protected amino ester (0.149 g, 0.49 mmol) in a 2:2:1 THF/MeOH/H₂O solvent system (15.0 mL) was added LiOH (0.012 g, 0.52 mmol). The reaction was allowed to stir at ambient temperature for 12 h. The volatiles (THF, MeOH) were evaporated *in vacuo* and the resulting aqueous solution was washed with CH_2Cl_2 (2 x 10 mL). The aqueous layer was then acidified with 10% citric acid solution, and extracted with CH₂Cl₂ (2 x 20 mL). The organic layers were combined and dried over anhydrous sodium sulfate. The organic layer was filtered and concentrated to a crude solid which was recrystallized from EtOAc/hexane to afford the BOC-protected amino acid **18** (0.067 gm, 59%)

Data for **BOC-protected amino acid-18.**

¹H NMR (CDCl₃, 300 MHz, 50 °C) δ 4.87 (br s, 1H), 3.75 (m, 1H), 2.53 (m, 2H), 1.85 (apparant octet, J=6.9 Hz, 1H), 1.44 (s, 9H), 0.94 (d, J=6.6Hz, 3H), 0.93 (d, J=6.6 Hz, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 176.9, 155.6, 79.4, 52.9, 37.2, 31.8, 28.4, 19.5, 18.7; IR (film, cm-1) 3322, 1719; TLC R*f* 0.37 (50% EtOAc/hexane); Anal. Calcd. for C₁₁H₂₁N₁O₄: C, 57.12; H, 9.15; N, 6.06. Found: C, 57.03; H, 9.20; N, 6.03.

Differential Scanning Calorimetry (DSC) measurements were performed at Science Resources, Inc. Laboratory (2029 Washington Ave., Suite 201, Evansville, IN 47714).⁵ The summary of the results obtained is as follows:

Summary

<u>.</u>

Samples of azide **2** and azide **6** produced DSC endothermic transitions with onset temperatures of 130.4 and 190.7°, respectively, followed by exothermic transitions. A sample of compound **13** produced two exothermic events where the onset temperature for the first event occurred at 200.1°C. The individual thermal curves appear below. The final curve is a comparison plot for all three samples normalized by sample weight for direct comparison of the size of the transitions. The peak apex for the larger exotherm for sample azide **13** is "squared-off" suggesting that this transition exceeded the detector range, consequently, the enthalpy of –769 J/g is underestimated.

The results are shown below.

⁵ We thank Robert J. Behme of Science Resources, Inc. for performing the DSC measurements.

